


• External Physical Telemetries: We collect the sensed

physical data from a third party system with a sensor array

and verify the validity of the target control system state.

To make tampering and omitting of the execution time data

more difficult, we can anchor the execution time data manage-

ment in OS kernel as one of the scheduler functionalities. Even

if the OS kernel is compromised and the execution times plus

system state are tempered with to circumvent detection, simply

transmitting arbitrary system state values does not compromise

the entire detection mechanism. Detection is not only based

on the internal system states but also on their relation to

and consistency with external physical states. For example, an

intruder may record and replay the output and voltage current

of an inverter, yet false power data can still be detected if it

does not match the expected values given the current weather

data at this geographic location.

Based on the above data, the IDS conducts two analyses,

Timing Analysis and Third Party Model Verification. The

former analysis checks the execution time against valid upper

bounds obtained from prior experiments. If the error is larger

than a certain threshold or the data packets are not received

before their deadline, the system will report an anomaly. If the

former analysis does not detect any anomaly, the latter analysis

is conducted, which supplies the input physical telemetry

data to a third party ML model and compares the measured

physical telemetry with the expected outcome based on the

ML model. The inputs to the model are selected based on the

specific control application from internal and external physical

telemetries. If the error is larger than a certain threshold, the

system will report an anomaly. The pseudo code of intrusion

detection is shown in Algorithm 1 using the model parameters

of Table I.

The two analyses can be further fused to more effectively

counter stealthy attack. A stealthy attack may evade the detec-

tion if it results in moderately suspicious execution times and

moderately suspicious physical state telemetries. However, the

IDS could still detect this attack by considering the execution

times and telemetries together, and raising an alarm if both are

moderately suspicious. Such fused detection will be based on

weighting the thresholds of the timing analyses and the ML

verification output and obtaining the summed overall detection

threshold. How to weight and fuse the detection thresholds is

beyond the scope of this paper. Such fused detection handles

independent detection of one data sources as a special case,

where other sources receive “zero” weights.

IV. PROMPTNESS

Our system addresses one of the most important require-

ments of IDS, promptness, as follows. One of our objectives is

to guarantee prompt response to the intrusion through reducing

the detection delay, i.e., the duration between the intrusion

event and the detection of such intrusion. “Promptness” does

not only imply a tight average timing bound of detection delay

but also a tight upper timing bound, namely Tdetect. The total

detection delay is the aggregate of two terms:

TABLE I
PARAMETERS OF THE DETECTION ALGORITHM

Symbol Description

N number of code snippets in the target control code

Dcomm deadline of communication delay

WCET [N ] worst-case execution time vector

THML ML model verification threshold

socket controller socket file descriptor

Data streaming data from controller

Tdtc the data reception timestamp on the detector

Ttgt the transmission timestamp on the controller

Tctrl[N ] execution time vector on target control system

PHYin internal physical telemetries

PHYex external physical telemetries

MSRin physical telemetries selected as measured inputs

MSRout physical telemetries selected as measured outputs

EXPout inference output of ML model

Algorithm 1 Intrusion Detection Algorithm

1: function DETECT ANOMALY( socket )
2: Data = read(socket);
3: Tdtc = gettimeofday();
4: if Data ≤ 0 then
5: return True; ⊲ packet not received
6: else
7: [Ttgt, Tctrl[N ], PHYin, PHYex] = parse(Data);
8: if Tdtc − Ttgt > Dcomm then
9: return True; ⊲ data packet not received in time

10: else if ∃i, Tctrl[i] > WCET [i], 0 ≤ i < N, i ∈ Z then
11: return True; ⊲ execution time over bound
12: else
13: [MSRin,MSRout] =

select telemetry(PHYin, PHYex)
14: EXPout = ML Model(MSRin)
15: if ‖EXPout −MSRout‖ > THML then
16: return True; ⊲ ML verification failed
17: else
18: return False; ⊲ No anomaly
19: end if
20: end if
21: end if
22: end function

• The duration between the start of the intrusion and the

time when the data packets are transmitted to and started to

be processed by the detection system, namely Tcomm.

• The duration between the start and the end of the analysis

of the packet data on the detection system, namely Tanaly .

Reducing the upper bound of the detection delay is not only

important to guarantee prompt detection of an anomaly but is

also essential to ensure fast data stream monitoring for the

target control system.

The transmission interval for streaming data packets can be

configured by the programmer to update the execution time

bounds and system state to detect an anomaly in a timely

manner. Ideally, such an interval is aligned to the control

system sampling interval to constantly monitor all system

timing bounds and physical states. In order to apply the ideal

data transmission interval, the detection delay should be less

than the ideal transmission interval. Since the communication

delay is determined by the operation system and network

medium, we have less margin to tune and optimize the

communication delay compared to the analysis delay. Hence,



we use experiments to determine the communication delay and

then focus on tightening the upper bound of analysis delays

via code optimization. In future work, we plan to enhance the

network stack and operating system kernels to further optimize

on communication delay.

Communication Delay: Our system uses a communication

delay deadline, Dcomm, on the detection system to verify

the validity of the first part of the detection delay, which

is the aggregate of T
target
proc (network processing delay on the

control system), Ttrans (network transmission delay between

control and detection systems), and T
detect
proc (system and net-

work processing delay on the detection system. The network

processing delay on both the target and detection systems can

be bounded within 2ms [9]. Both systems are usually deployed

in the same local area network (LAN) connected via Ethernet

with a typical upper bound of delay < 1ms for 100Mb wired

Ethernet [2], which is better than any wireless delay [7].

We assume the system clocks are synchronized for the target

control and detection systems using Network Time Protocol

(NTP) or Precision Time Protocol (PTP) with a system clock

error Terror bound of 18ms and tens of nanoseconds, respec-

tively [4].

We ensure that the detector waits for and then timestamps

the arrival of packets from the controller instead of leaving

the arrived packet in the socket buffer and timestamping them

later. By not buffering packets, we tighten the upper bound on

the communication delay.

Assuming we use NTP and given the above timing

bounds, we obtain a theoretical communication delay deadline

Dcomm = maxTcomm + Terror = max(T target
proc + Ttrans +

T
detect
proc ) + Terror = 2 + 1 + 2 + 18ms = 23ms.

Analysis Delay: The analysis delay is the worst-case exe-

cution time (WCET) of the detection task, which is checking

the validity of the execution time upper bound and the state

of the control system using the ML model. In our experiment,

we found that the WCET for the execution time checking

code is significantly smaller than the WCET of the ML model

checking code (see experimental section).

The WCET of the ML model checking code is dependent

on the ML library deployed on the detection system. Since

ML model verification is an inference task, we only consider

the WCET of the inference API of the ML library. We select

representative ML libraries to compare their suitability for a

more predictable upper bound on the execution time of their

inference APIs. We select Keras with a Tensorflow backend

as the representative for an interpreter-based ML library and

Caffe for a compilation-based library. In contrast to the Python

interpreter-based Keras library, the inference code of Caffe is

written in C++ and compiled into native code, which should

in principle result in tighter upper bounds of execution time.

Another significant advantage of Caffe over Keras is that it

utilizes less memory than Keras and does not dynamically

allocate/free any of it. Python’s background garbage collector

does not provide fine-grained real-time control and often

perturbs the predictability of execution time of the ML tasks

under Keras. The same is true for Python’s reliance on an

interpreter, which not only adds overhead for execution but

also reduces predictability. (Notice that Python’s libraries, such

as numpy, often make calls to lower-level C or Cuda libraries

for CPUs and GPUs, respectively, which results in better and

more predictable performance on higher-end platforms, but not

on embedded architectures such as the Raspberry Pi.)

Our experimental comparison shows that the average ex-

ecution time of Keras’s inference phase is about 4 times

slower than that of the original Caffe code basis. However,

the standard deviation of the execution time, which is directly

related to execution time predictability, varies significantly for

the original Caffe code distribution, i.e., it is occasionally

two orders of magnitude larger and otherwise 4 times smaller

than that of Keras. This somewhat surprising result shows that

Keras outperforms the original Caffe code in performance and

real-time predictability for the ML task of inferencing.

V. ACCURACY

The accuracy of our system is evaluated by the confusion

matrix, where the false negative (FN) rate indicates undetected

anomalies and the false positive (FP) rate indicates normal

state flagged as abnormal.

The overall system accuracy is affected by both the accuracy

of execution time upper bound checking and the accuracy of

ML model verification. We denote the FP rate and FN rate

for the timing analysis and ML model verification as FPtm,

FPML,FNtm and FNML respectively. The derivation can be

briefly described as follows. An FN detection of the overall

system occurs when and only when an attack takes place to

the controller but neither timing analysis nor ML verification

detect such an intrusion. Thus, an FN event implies both

timing analysis and ML verification failed, which is equivalent

to multiplying the probabilities of these two independent de-

tectors. In contrast, an FP occurs when there is no attack but

either timing analysis or ML verification flag an anomaly, i.e.,

the union of FP events of the two detection methods. Since an

anomaly flagged by timing analysis precedes ML verification,

the FP event of the ML verification coincides with a true

negative (TN ) of timing analysis. Since TN = 1 − FP ,

the overall system detection FN, FNsys, and false-positive,

FPsys, rates are: FNsys = FNtm ∗ FNML (1)

FPsys = FPtm + (1− FPtm) ∗ FPML (2)

Here, we observe that FNsys is reduced by a factor of 0 <=
FNML <= 1. Although an extra term, (1−FPtm)∗FPML, is

added to the overall system FP rate, detection still depends on

FN and FP . In other words, a trade-off exits between the cost

of reacting to false alarms and missing anomalies, where the

latter exposes systems to greater risk. Such a study is beyond

the scope of this paper. Instead, we focus on configuring

the detection threshold of the timing analysis and the model

verification for better overall accuracy of the detection system

based on a pre-trained ML model.

VI. EXPERIMENT

We consider a practical industrial problem, where a green

(solar) power generation source is secured. The core part of





ACKNOWLEDGEMENT

This work was funded in part by NSF grants 1329780,

1813004.

REFERENCES

[1] Sachin P. Joglekar and Stephen R. Tate. Protomon: embedded monitors
for cryptographic protocol intrusion detection and prevention. Interna-

tional Conference on Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004., 1:81–88 Vol.1, 2004.
[2] Ming Li. Delay analysis of networked control systems based on 100 m

switched ethernet. TheScientificWorldJournal, 2014:751491, 2014.
[3] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha, and

Marco Caccamo. S3a: Secure system simplex architecture for enhanced
security and robustness of cyber-physical systems. In Proceedings of

the 2Nd ACM International Conference on High Confidence Networked

Systems, HiCoNS ’13, pages 65–74, New York, NY, USA, 2013. ACM.
[4] T. Neagoe, V. Cristea, and L. Banica. Ntp versus ptp in com puter

networks clock synchronization. In 2006 IEEE International Symposium

on Industrial Electronics, volume 1, pages 317–362, July 2006.
[5] Tao Qian, Frank Mueller, and Yufeng Xin. Hybrid edf packet scheduling

for real-time distributed systems. In Euromicro Conference on Real-Time

Systems, pages 37–46, July 2015.
[6] A. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy chal-

lenges in industrial internet of things. In 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), pages 1–6, June 2015.
[7] Shweta Singh and Arun Tripathi. Analysis of delay and load factors in

wired and wireless environments, 12 2015.
[8] Nils Svendsen and Stephen Wolthusen. Using physical models for

anomaly detection in control systems, 03 2009.
[9] J. Xie and M. Xie. Delay bound analysis in real-time networks with

priority scheduling using network calculus. In 2013 IEEE International

Conference on Communications (ICC), pages 2469–2474, June 2013.
[10] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Time-based intrusion

dectection in cyber-physical systems. In International Conference on

Cyber-Physical Systems, pages 109–118, April 2010.


